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Abstract—In a Robot Learning from Demonstration frame-
work involving environments with many objects, one of the
key problems is to decide which objects are relevant to a
given task. In this paper, we analyze this problem and propose
a biologically-inspired computational model that enables the
robot to focus on the task-relevant objects. To filter out
incompatible task models, we compute a Task Relevance Value
(TRV) for each object, which shows a human demonstrator’s
implicit indication of the relevance to the task. By combining
an intentional action representation with ‘motionese’ [2], our
model exhibits recognition capabilities compatible with the
way that humans demonstrate. We evaluate the system on
demonstrations from five different human subjects, showing
its ability to correctly focus on the appropriate objects in these
demonstrations.

I. INTRODUCTION

Robot Learning from Demonstration (LfD) has been
widely studied over the past decade with the aim of providing
an efficient means of teaching tasks to robots [5]. Instead of
explicitly programming the required sequence of actions, it is
intended that human users teach robots in a more natural way.
Achieving this capability is, of course, quite challenging (as
discussed in [12], [13]), and it has often been characterized
as solving the following questions: who to imitate, when to
imitate, how to imitate, what to imitate, and how to judge if
an imitation was successful [9].

In this paper, we focus on the issue of what to imitate.
As stated in [14], it differs from how to imitate (e.g. [10],
[11]) because the robot does not intend to copy the exact
trajectories of actions, but to deduce the intention of the
demonstrator (e.g. [1], [17], [18]). It is known that humans
tend to interpret actions based on goals rather than motion
trajectories [15], [16] and the aim of Learning from Demon-
stration is that a human instructor should be able to teach a
robot in a similar manner as she would teach a human.

In particular, we analyze the problem of finding task-
relevant entities, i.e. which entity matters to the current
task. Entity is the generalization of the conventional meaning
of object which usually refers to a physical element to be
manipulated by either the human user or the robot to achieve
the given task. Thus, entity may include not only inanimate
objects but also human beings, since there are tasks where
the relationship between the robot and human user needs to
be defined, such as handing over a coffee cup fo the person.

Our work is motivated by the work done in [3], where
Nagai and Rohlfing analyze motionese, a concept recently
introduced in the field of developmental learning [2]. Mo-

tionese is the phenomenon where a teacher or parent modifies
his/her behavior when demonstrating a new task or skill to
a child. They exaggerate and repeat movements in order to
help infants understand the key elements of actions and tasks.
As this work suggests, motion is a natural and effective cue
for humans to suggest which object is more important than
the other.

In their work they demonstrated the kind of information
that motionese communicates to a learner. In our work here,
we utilize this in the domain of task learning. Our system
combines this notion of motion saliency with intentional
action understanding framework to help the robot focus on
task-relevant objects during a demonstration. We implement
an intentional action understanding mechanism using the
HAMMER architecture proposed by Demiris and Khadhouri
[4].

In this work, we emphasize the importance of focusing
on task-relevant objects and propose a computational model
that is capable of recognizing human task demonstrations
in a situation where action perception inherently involves
ambiguity. This paper makes the following key contributions.

1) We present a new algorithm that can quantitatively
measure the relevance of entities to a task from a bottom-
up based saliency map and can maintain and update those
relevances over time. Defining saliency at entity level instead
of at pixel level provides a learning system with more natural
perception interface to a working environment.

2) We present a new computational model that integrates
and augments saliency of entities with intention assertions of
HAMMER to permit the description of a task as a sequence
of predefined primitive operations where each operation only
refers to the relevant entities. Integration of the task rele-
vance value of entities into HAMMER architecture enables
a learning system to filter out incompatible actions and thus
results in reducing the level of ambiguity inherent in cluttered
working space environments.

3) Last but not least, we demonstrate in our evaluation with
human subjects that this computational model represents how
people naturally demonstrate two object-oriented tasks to a
robot.

II. SYSTEM ARCHITECTURE
A. Target hardware

We designed the system to eventually run on our upper-
torso humanoid robot, Simon. Simon has 42 degrees of



Fig. 1. System overview. Two cameras are pointing down to a desk
and observing a human instructor demonstrating a task. Physical synthetic
markers are applied on objects and placed on a desk to estimate pose of
cameras and objects.

freedom, including two arms, a torso and a socially ex-
pressive head. Simon is able to manipulate simple objects
using its hands. In this work we are developing the recog-
nition capabilities that could form the basic functionality
for Simon’s task learning abilities. Although these primitive
actions described in this paper are far from sufficient to
learn a wide variety of tasks, they are generic enough to
illustrate our approach to saliency based object selection.
In this work, we use two Fire-i IEEE1394 cameras for
object tracking in the workspace. As a framework, we have
modified ARToolKitPlus[8] to control the camera directly
using OpenCV library[19]. Although this simplifies some of
the visual processing, the architecture incorporates all the
necessary components for testing on real robots. Addition-
ally, since Simon is not a mobile robot, it is reasonable to
use static environmental cameras as perceptual inputs.

B. Object Detection and Localization

We detect and localize objects by estimating 6-DOF pose
(3D in location and 3D in orientation) of synthetic physical
markers — affixed to the faces of objects — using ARToolK-
itPlus [8]. We define the global reference frame using four
markers on the table as shown in the left-bottom part of
Fig. 1. The center of those markers becomes the origin of
the reference frame and with the help of ARToolKitPlus we
register the 6-DOF poses of cameras. To estimate the pose,
especially the depth range, of an object, multiple cameras are
used. The depth range of an object estimated with one camera
is not accurate because ARToolKitPlus infers the depth range
of an object by using apparent size. As the object gets farther
away from the camera, the estimated scale becomes less
accurate. Thus, we use multiple cameras to better estimate
the pose of markers by fusing estimates obtained from each
camera. We compute two line equations in a 3D space where
each line joins the point of the camera itself and the estimated
location of a marker from that camera. We find a point such
that the sum of the distances between the point and two lines
are minimum. We conduct all experiments in this paper with
two cameras.

ITII. FINDING THE OPTIMAL SET OF ENTITIES
FOR TASK LEARNING

Knowing which entities are involved in the task is critical
to the efficiency of task learning and the complexity of the
learned result. If the robot focuses on all the known objects
in the workspace where only one or two objects are actually
engaged in the task, it would result in generating a too
specific and brittle task description.

In this section, we analyze three methods that influence the
selection process of task relevant entities: 1) Measurement
of task relevance value (TRV) of an entity, 2) Understanding
a demonstrator’s intention, and 3) Explicitly indicating an
entity as important by means of shaking or waving at the
beginning of the task. 1) and 3) are similar to the notion of
motionese which is used to draw an infant’s attention and
emphasize particular objects at particular times in the task
[3]. The output of our system is a sequence of observed
actions that represents a task demonstration.

Before describing these methods, we define Entity as any
system-recognizable object which can be either animate or
inanimate. In the domain of task learning, an entity is often a
physical element which is used to represent a task along with
actions. In our experiments, an entity is a block on which a
synthetic marker is applied and has two attributes, 3-D pose
and label. Values of these attributes are obtained and updated
by the marker-based detector explained in Section I1 — B.

A. Measurement of Task Relevance Value(TRV)

The main purpose of using the TRV is to give priority
to the objects that are likely to be relevant to the task.
An object’s TRV is increased when the demonstrator starts
manipulating the object and gets decreased as the object
is no longer used by the demonstrator. This mechanism is
particularly useful when there are many objects and only
a small portion of them are used during the performance
since the learner does not have to pay full attention to all
of the objects in the scene. This is a scenario that will be
encountered often in real-world cluttered workspaces.

To provide this functionality, we have implemented the
visual attention system suggested in [7]. Instead of using
color, intensity, and orientation channels, we are only using
the motion channel which is relevant to our experiment.
From the vector image of optical flow, the saliency map
is constructed and the salient regions are located using the
computation method suggested in [7].

[4] loc: =58.9 155.4 46.8
(3] loc: 3487 1445 152.3

[2] toc: 2503 157.1 459

Fig. 2. Example of motion saliency. The only block that a demonstrator
is moving becomes salient.



For each time frame, the saliency values in the region of
the entities on image coordinates are summed and added to
the corresponding object’s TRV as in (1).

It is important to note that the TRVs of all entities in the
scene could be considered as a cognitive attention map (vs.
visual attention map,) where the saliency is assigned to each
entity instead of each pixel on an image. The TRV of an
entity is calculated as follows:

ax* I,

TRVy =TRViy +

- (1

where I, is the sum of the normalized motion intensity
values of the region in the visual attention map in which the
object is occupying, S is the area of the object region, and ¢ is
the current time step. v and -y are constants that determine the
rate of increase and decrease of the stimulation, respectively.
In this experiment, these values were determined empirically
where o = 10 and v = 0.02.

If TRV of an entity is under a threshold, the value
which essentially comes from the noise generated in real
environments, that entity is not considered in the task demo
representation. Otherwise, the entity is considered important
(task-relevant) and recorded into the task representation.

Clearly the parameters « and  must reflect the timing or
pace at which a task is demonstrated. If the decay rate -y is
too large, all known objects in the scene will be treated with
the same importance. Alternatively, if it is too small, any
object that was moved once will be remembered and their
relations with other objects will be recorded throughout the
demonstration.

B. Understanding a Demonstrator’s Intention

Understanding a human’s intentional behavior could pro-
vide additional ‘top-down’ information about which objects
the demonstrator may be focusing on. In this section, we
give a brief description of the actions we used and how we
generate a prediction of those acts.

1) Primitive actions: We have defined a set of object-
oriented actions that could eventually be performed by
our robot. They include moveUp, moveLeft, moveDown,
moveRight, placeLeftOf, and placeRightOf. The
notion of placeRightOf and PlaceLeftOf does not
strictly have a meaning of put on the ground. It can simply
mean being proximate to either left or right side of another
object.

2) Action recognition: In this work, a Hierarchical Atten-
tive Multiple Models for Execution and Recognition (HAM-
MER) model is used to estimate the demonstrator’s intention
[4]. Motivated by theories of cognitive function that focus
on mental simulation [6], this architecture is composed of
basic building blocks involving a pair of inverse and forward
models that are used to either perceive or execute an action
as shown in Fig. 3. B,(n = 1,2,...,N) is one of the N
inverse models, i.e. primitive actions, and F}, is one of the N
forward models, i.e. predictors. M,,, P,, E,, are motor signal,
prediction signal, and error signal, respectively.

The role of an inverse model, which could be thought of
as a primitive action in our case, is to generate appropriate
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Fig. 3.

Basic HAMMER architecture [4]

motor commands to the system to achieve the target goal
based on the observation of the current state. The inverse
models could be parametrized with the object type rather
than keeping a separate model for each object. In contrast,
the role of a forward model is to output the predicted next
state of the system by considering both the current state from
the system and a control command. A set of inverse-forward
models were hand-coded as done in [4] to output a prediction
of the next state of the system.

Once the prediction is made, it is compared with the actual
state of the demonstrator in the next time step and an error
signal is generated. This error signal changes the confidence
value of an inverse model based on (2). Hence, taking the
perceived visual information as input, HAMMER hypoth-
esizes the demonstrator’s intent and computes measurable
predictions of the next possible state (i.e., the robot forms
expectations about how the demonstrator will move next.)
It is then verified on the next time step to see whether
the hypothesis was correct. Depending on the result, the
confidence value conf of every inverse model is updated,
which is equivalent to the likelihood value of an action. For
further description on this architecture, please see [4].

Due to the high computational complexity that might occur
from updating all of these inverse models, only the inverse
models which consider the objects that are being manipulated
are updated. This is important since the number of inverse
models increases as the number of known objects rises.

The confidence value of the k-th inverse model could be
computed as follows:

confr(t—1)+1+ N,
confr(t—1)—1— N,

if prediction is correct
otherwise

nsit) - {

2
where ¢ is the current time step and [V, is the number of times
the inverse model has been rewarded in the past. Similar
to TRV, due to the natural noise, confidence value under a

threshold is set to zero, where £ = 10 in our case.

3) Task generation: The inverse model with the highest
confidence value is recorded when it takes a clear lead, i.e.
the maximum confidence value is larger than 2 times that
of the average value p. To quantize this value, we define



con fratio as follows:

confratio = confma:v/(Q * /J') (3)

An action sequence is added to the task demo representation
when confrq10 > 1.0; otherwise, no action sequence is
recorded.

C. Explicitly expressing an important entity

In an explicit teaching interaction, there are times that the
human instructor wants to give attention to some entities
explicitly. In other work, it has been shown that parents
engage in this type of behavior when demonstrating to infants
[3]. Our system has the ability to take the advantage of this
social cue. By shaking an object, the demonstrator can force
the robot to be aware of it, which we call registration. Once
the object is registered, the object is always considered task-
relevant (i.e. salient) regardless of TRV, and throughout the
task demonstration it is included in the task representation.
Registration could also be used to clarify an ambiguous
situation, which will be discussed in the following section.

IV. EXPERIMENTS

Our system is designed to observe a person manipulating
objects in the workspace, and determine the sequence of
primitive actions they were meaning to demonstrate. There
are several objects in the workspace, thus the particular
object relations that the person means to demonstrate are
ambiguous. We demonstrate that our saliency mechanism
allows the system to focus attention on task relevant objects
in order to infer the appropriate actions.

Since our end goal is for the robot to learn from everyday
people, the appropriate evaluation of our system is its perfor-
mance in recognizing task demonstrations from a number of
different users (who are not system designers). This measures
the extent to which our system is generic to the variety of
ways that people demonstrate object oriented tasks.

A. Experimental Setup

In our experiment we test two tasks as shown in Fig. 4.
Each task is performed five times each, by five volunteers,
resulting in 25 demonstrations per task. Each person was
given two task description cards as instructions for what to
demonstrate. They demonstrated each task to the robot by
repeating the same task five times. They were not instructed
about how to perform the task (e.g., how fast to move the
objects, etc.).

In Task 1, the demonstrator was instructed as follows:

Pick block 1 and move upward. Move it left and place it
on the right side of block 4. Next, pick block 4 and move
upward. Move it right and place on the right side of block
1.

In Task 2, the demonstrator was instructed as follows:

First, pick block 4 up, shake it for a short period, and
place it down as if you were to indicate that this block is
important. Then, move block 3 left and place it down near
the gray wall. Pick block 1 and move upward, move left, and
place it on the left side of block 4, which you shook last time.

Task 1

SN
Fig. 4. Two types of tasks to be learned by the robot. Task 1 tests effects

of saliency of objects on task learning and Task 2 registration of objects as
well as saliency of objects respectively.

Pick block 1 again and move upward, move right, and place
it on the right side of block 4.

B. Experimental Results

Our evaluation considers how often the system correctly
classified the sequence of primitive actions for the two tasks.
The results are shown in Table I. For the first task, the system
correctly segmented and classified action sequences in the
right order on 22 out of 25 demonstrations.

The Fig. 5(a) shows a case when the system success-
fully encoded the demonstrator’s action sequence using only
blocks 1 and 4.

In the last part of the Task 1, although the observed
action may be encoded as either placeRightOf (4, 1)
orplaceLeftOf (4,2),placeRightOf (4, 1) was se-
lected because the user recently moved block 1. Also, even
though block 1 passed the left side of block 3, which can be
interpreted as placeLeftOf (1, 3), it was not recorded
because the system identified the demonstrator’s intention as
pickUp (1). Hence, blocks 2 and 3 are not included in the
task demo represenation.

However, Fig. 5(c) shows a sequence where the system
added placeRightOf (1, 3) which can be seen at around
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(c) A case where Task 1 was learned with error. At around frame 50, (d) A case where Task 2 was learned with error. Confidence values of both

placeLeftOf(1,3) is recorded. It is shown in green color.

Fig. 5.

placeLeftOf(1,3) and placeRightOf(1,4) are high, which are shown in green
color. The first 100 frames are not shown due to the limited space.

Change of the confidence values as the demonstration unfolds. In these graphs, each peak value could be thought of as a recognized action that

is recorded into the task demo representation. Only inverse models that are related to the objects manipulated by the demonstrator are considered.
Correct sequence of Taskl: moveUp (1l)-moveLeft (1)-moveDown (1l)-placeRightOf (1,4)-moveUp (4)-moveRight (4)-moveDown (4)-
placeRightOf (4, 1). Task2: moveLeft (3)-moveDown (3)-moveUp (1)-moveLeft (1)-moveDown (1)-placeLeftOf (1,4)-moveUp(1l)-

moveRight (1)-moveDown (1)-placeRightOf (1, 4)

frame 50, due to the ambiguity of the demonstrator’s inten-
tion. In this case, block 3, which is not part of the task, was
recorded in the task demo representation. The demonstrator
slowly moved block 1 up such that it stayed right next
to block 3 for a significant amount of time. This explains
why placeRightOf (1, 3) was added to the task demo
representation.

For the second task, the system correctly classified 16
out of 25 demonstrations as shown in Table I. In the
second task, demonstrators intentionally registered block 4
by shaking it at the beginning of the task. The example in
5(b) shows a case that when the instructor moved block
1 down and then back to the right side of block 4, the
system correctly selected placeLeftOf (1, 4) with high
confidence. The system fails sometimes due to the speed
of demonstration. In the example shown in Fig. 5(d), the
system is not certain whether the last intended action was
placeLeftOf (1,3) or placeRightOf (1, 4), where

the correct action is placeRightOf (1,4). The TRV
of block 3, from the initial movement, was still high
enough to consider placeLeftOf (1,3) when block 1
was placed between blocks 4 and 3. In this case, both
placeLeftOf (1,3) and placeRightOf (1, 4) show
high confidence values, resulting in an ambiguous situation.

V. DISCUSSION

In this paper, we proposed a computational model that
records task demonstrations in a human-like manner and
reduces possible ambiguity in action perception, which can
easily happen in real-world cluttered workspaces. By in-
corporating the mechanisms of entity saliency evaluation,
intention understanding, and registration, our system is able
to make reasonable estimates of the appropriate entities to
include in a task demonstration example.

Our notion of Task Relevance Value (TRV) of entities



TABLE I
POSSIBLE CASES AND RESULTS

Task 1
Error type Frequency | Comments
Additional actions | 3 The instructor hesitated while mov-
ing the block
Did not occur
Task 2
Error type Frequency | Comments
Additional actions | 1 The instructor aligned blocks after
the placement
TRV remained high enough to give
confusion

Confusing actions | 0

Confusing actions | 8

represents the implicit indication that a demonstrator makes
about the relevance of objects during their task execution.
Paying attention to this important cue in human behavior
allows the robot to filter out incompatible inverse models,
and thus reduce the level of ambiguity inherent in cluttered
workspace environments.

Our experiment shows that our system is often successful
in focusing on task-relevant objects and recognizing the
intended actions of a human’s demonstration. During the
two task examples used in this experiment, the majority
of demonstrations were recognized correctly by filtering
out irrelevant action sequences that are not supposed to be
demonstrator’s intentions. In addition, the system errs on the
side of caution which in turn is less detrimental to the overall
performance of learning by demonstration.

One limitation of our system is that it is difficult to find the
optimal increase and decrease rates while calculating TRV.
Most of the errors occurred in our experiments were due to
the variability of the demonstration speed, in addition to his
imprecise actions. Also, we need a predefined set of inverse
models that might be tedious to write. However, by defining
the minimum set of commonly used primitive operations, it
would be possible to represent many higher level tasks with
the combination of these operators.

It is worth noting that multiple demonstrations are neces-
sary, allowing the robot to adjust missing or corrupted parts
of the task representation over time. If communicative skills
are added, a common feature in active learning, the robot
might be able to effectively correct the misidentified action
segments.

VI. CONCLUSION

In this paper we have presented a computational system for
robot learning by demonstration. Our focus is on the problem
of how a robot determines what to imitate, in particular
how it can determine which objects in the environment are
relevant to the task demonstration. We have shown that a

system that combines the use of forward and inverse models
for action representation and social ‘motionese’ cues can
efficiently record examples of task demonstrations from a
human partner in ways that coincide with the task they

intended to teach. In the future, we would like to incorporate
the notion of context using a stochastic grammar to better

identify not only irrelevant objects but also irrelevant events.
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