
Learning Reusable Task Components using Hierarchical Activity
Grammars with Uncertainties

Kyuhwa Lee, Tae-Kyun Kim and Yiannis Demiris

Abstract—
We present a novel learning method using activity
grammars capable of learning reusable task compo-
nents from a reasonably small number of samples
under noisy conditions. Our linguistic approach aims
to extract the hierarchical structure of activities
which can be recursively applied to help recognize
unforeseen, more complicated tasks that share the
same underlying structures. To achieve this goal, our
method 1) actively searches for frequently occurring
action symbols that are subset of input samples to
effectively discover the hierarchy, and 2) explicitly
takes into account the uncertainty values associated
with input symbols due to the noise inherent in
low-level detectors. In addition to experimenting
with a synthetic dataset to systematically analyze
the algorithm’s performance, we apply our method
in human-led imitation learning environment where
a robot learns reusable components of the task
from short demonstrations to correctly imitate more
complicated, longer demonstrations of the same task
category. The results suggest that under reasonable
amount of noise, our method is capable to capture the
reusable structures of tasks and generalize to cope
with recursions.

I. INTRODUCTION

Humans have a natural ability to learn new activity repre-
sentations despite noisy sensory inputs by using previously
learned action components, since many human activities are
inherently structured. This ability can be also found in the
process of language acquisition, where a child acquires more
sophisticated concepts by incorporating previously learned
vocabularies.

Motivated by this observation, we are interested in learn-
ing reusable action components to better understand more
complicated tasks that share the same structures under noisy
environments. Stochastic context-free grammars (SCFGs) are
used as our framework since 1) they are robust to noise
due to their probabilistic nature, 2) they provide a compact
way to represent hierarchical and recursive structures, and 3)
they output human-readable results which can be interpreted
intuitively for non-experts. Other commonly used techniques
such as HMMs provide faster recognition speed but they
are less expressive as they are based on regular grammars.
For example, the following language cannot be represented:
anbn, where a=Push, b=Pull (equal number of Push and Pull
operations.)

All authors are with the Intelligent Systems and Networks group, Depart-
ment of Electrical and Electronic Engineering, Imperial College London, UK.
{k.lee09, tk.kim, y.demiris}@imperial.ac.uk

Grammar Learning

Hierarchy

Discovery

Generalization

Symbol Generation

Low-level Video

Processing

Symbol

Representation

Testing

New Video

Parsing

Execution of

Parsed Actions

Fig. 1. Overview of the framework.

A large amount of effort has been spent to understand tasks
using context-free grammars(CFGs). In [1], Ryoo defines
a game activity representation using CFGs which enables
a system to recognize events and actively provide proper
feedback to the human user when the user makes unexpected
actions. In [2], Ivanov defines SCFG rules to recognize more
complicated actions, e.g. music conducting gestures, using
HMM-based low-level action detectors. In [3], a robot imitates
human demonstrations of organizing objects using SCFG-
based task-independent action sequences. There are also
several other areas that utilize CFGs as the framework such as
computational biology and speech recognition, as mentioned
in [4]. Aloimonos et al. [5] give detailed explanations
about various useful applications that use linguistic approach
including human motoric action representations.

The aforementioned studies consider cases where the proper
grammar rules are given in prior. As opposed to manually
defining the grammar rules to represent a task, there are also
several works aiming to construct (i.e. induce) grammars from
data. In early work, Nevill-Manning et al. [6] presented the
SEQUITUR algorithm which can discover hierarchy among
symbols. Solan et al.[7] presented the ADIOS algorithm
which induces CFGs and Context-sensitive grammars as well
with some restrictions (e.g. no recursions) using graphical
representations. Stolcke and Omohundro [8] presented a
SCFG induction technique, which more recently has been
extended by Kitani et al. [9] to remove task-irrelevant noisy
symbols to cope with more realistic environments. More
detailed reviews will be given in Sec. II.

Compared with the conventional learning techniques, our
method has two distinctive features: 1) Our method actively
searches for frequently occurring sub-strings from the input
stream that are likely to be meaningful to discover hierarchical
structures of activity. 2) We take into account the uncertainty
values of the input symbols computed by low-level atomic
action detectors. Similar to Ivanov’s work [2] where they
augmented the conventional SCFG parser by considering
the uncertainty values of the input symbols, we extend the
conventional SCFG induction technique by considering the
uncertainty values of the input symbols.

In this paper we study how learning activity grammars
can be learned from human partners. We assume that 1) the
system can detect meaningful atomic actions which are not
necessarily noise-free, and 2) extensive complete data sets
are not always available but numerous examples of smaller
component elements could be found.

II. RELATED WORK

Our framework (Fig. 1) shares the concept of imitation
learning presented in [10], [11], where a robot learns a new
task directly from human demonstration without the need for
extensive reprogramming. We are inspired by the work in [12]
which shares the same motivation of hierarchical learning
with our work. In their work, the authors designed a set of
primitive actions which are then used as building blocks,
i.e. basic vocabularies, to represent higher-level activities.
However, it does not deal with more complex concepts such
as recursions which we will deal with here.

In [8], Stolcke and Omohundro proposed a technique
on merging states which generalizes SCFG rules to deal
with unforeseen input with arbitrary lengths, e.g. symbols
generated by recursive rules. They introduce two operators,
chunking and merging, which convert an initial naive grammar
to a more general one. The method assumes that input
terminal symbols are deterministic, i.e. all symbols are
equally meaningful and do not contain any certainty values.
Our method is different in that it takes into account the
uncertainty (or probability) values of input symbols and
explicitly searches for regularities using n-gram-like frequency
table within each input sample. This allows us to generalize
the rule more effectively with the same amount of data
samples that better represents data.

More recently, Kitani et al. [9] presented a framework
of discovering human activities from video sequences using
SCFG induction technique based on [8]. By assuming that
the noise symbols are not part of the task representation,
they try excluding some symbols from input stream until a
grammar with strong regularity is found based on minimum
description length (MDL) principle. However, because noise
symbols are not assumed to be part of task representation,
it is limited to dealing with insertion errors where wrong
symbols are accidentally inserted.

III. BACKGROUND

A. Stochastic Context-Free Grammar Induction

A context-Free Grammar (CFG) is defined by a 4-tuple
G={Σ, N, S,R}, where Σ is the set of terminals, N is the
set of non-terminals, R is the set of productions rules, and
S is the start symbol. The production rules take the form
X → λ, where X ∈ N and λ ∈ (N ∪Σ)∗. Non-terminals are
denoted in uppercase letters while terminals are denoted in
lowercase letters. In Stochastic CFG (SCFG), also known as
Probabilistic CFG (PCFG), each rule production is assigned
continuous probability parameters.

To induce an activity grammar from input data (terminal
symbols), first an initial naive grammar is built as the starting
point by adding all input sequences to the start symbol S.

Starting from the initial grammar, two kinds of operators,
Substitute and Merge, are applied until the ”best” grammar is
found. The quality of a grammar is measured by the Minimum
Description Length (MDL) principle as used in [13][9][8],
which will be explained more in Sec. III-B.

The Substitute operator builds hierarchy by replacing a
partial sequence of symbols in the right-hand side of a rule
with a new non-terminal symbol. The new rule is created such
that a new non-terminal symbol expands to these symbols. The
Merge operator generalizes rules by replacing two symbols
with the same symbol. As a result, it converts the grammar
into the one that can generate (or accept) more symbols than
its predecessor while reducing the total length of the grammar.

B. Measuring the Quality of a Grammar

The general objective is to find a grammar that is suffi-
ciently simple yet expressive as pointed out by Langley et al.
[13] We denote P (M) as a priori model probability, where
M includes only the structure and parameter priors which
does not consider the input data D, and P (D|M) as data
likelihood. Then, our goal is to minimize the MDL score as
-log of joint probability P (M,D):

−logP (M,D) = −logP (M)− logP (D|M) (1)

The data likelihood P (D|M) is computed using Viterbi
parsing, which is commonly used in HMMs. However, unlike
[8] and [9], to handle the uncertainty values of the input
symbols, the method of computing the likelihood needs to
be modified. To cope with this situation, we use the SCFG
parsing algorithm with uncertainty input introduced in [2] to
compute data likelihood.

IV. PROPOSED METHOD

We first explain our method of computing the rule proba-
bilities in the first section, followed by considering symbols
with uncertainty values.

A. Active Substring Discovery

To generate a grammar that focuses on patterns with strong
regularity, we build an n-gram-like frequency table such that
it keeps the number of occurrences of substrings that are
subset of input sequences. The score of a rule X → λ is the
occurrence value of λ in the frequency table multiplied by
the expected probability value of λ. Its calculation will be
discussed in the following section, Sec. IV-B.

For simplicity, we first consider the case without uncertainty
values. In this case, as defined in [8] and [9], the rule
probability is calculated by normalizing rule scores, i.e.:

P (X → λi) =
f(X → λi)∑
k f(X → λk)

(2)

where λi is the i-th rule production of non-terminal X and
f(·) denotes the frequency of the string. P (X → λi) satisfies
the following property:∑

i

P (X → λi) = 1 (3)

 SABABABAB (6)
 | ABACABAB (1)

SZZ (7)
XAB (27)
 | AC (1)
ZXX (13)

SSS (20) [0.42]
 | AB (27) [0.56]
 | AC (1) [0.02]

(a) (e)
[0.86]
[0.14]

SZZ (7)
ZAB (27)
 | AC (1)
 | ZZ (13)

(d)
[1.00]
[0.66]
[0.02]
[0.32]

(c)

SZZ (6)
 | XYZ (1)
XAB (27)
YAC (1)
ZXX (13)

(b)
[0.86]
[0.14]
[1.00]
[1.00]
[1.00]

[1.00]
[0.96]
[0.04]
[1.00]

Fig. 2. (a) Initial naive grammar (b) After Substituting AB with X ,
AC with Y , and XX with Z (c) After Merging (X,Y) to X (d) After
Mergeing (X,Z) to Z (e) After Merging (S,Z) to S

Unlike [8] and [9], the symbol counts are computed directly
from the occurrences of each input sequence as whole, not
subset. However, in our method, as we keep counts for all
possible sub-patterns from input samples, the probability of
each rule is always larger than zero even if there was no input
sequence that exactly matches the discovered sub-pattern. This
has an effect of stronger “inductive leap”, i.e. higher tendency
to generalize from relatively small number of input samples.

To illustrate, suppose that we want to learn an activity with
repetitions (ab)n from the 6 correct samples of “abababab”
and 1 erroneous sample of “abacabab”. The initial naive
grammar (Fig. 2(a)) simply contains all input sequences.We
use parentheses (·) and brackets [·] to represent counts and
probability, respectively. We now apply a Substitute (Fig.
2(b)) and Merge operators (Fig. 2(c)-(e)) introduced in [8]
with rule scores obtained from our frequency table. We have
obtained a more generalized grammar that favors (yielding
higher probability when parsed) input sequences mostly
containing AB’s. It is worth noting that the rule probability
of erroneous symbol AC is still in the grammar but with very
low probability. As a result, this grammar “allows” occasional
errors as it still accepts noise cases with low probability
instead of simply rejecting. This “soft” classification is one
of the advantages of SCFGs.

In practice, it is often useful to limit the maximum length
of symbols to be considered in frequency table to avoid
generating exhaustive list of symbols to increase the speed.
This is reasonable assumption as human activities usually
involve repetitive action components[14]. Since the search
space of the possible grammars is not small, a beam search
strategy is applied as in [8] which considers a number
of relatively good grammars in parallel and stops if a
certain neighborhood of alternative grammar models has been
searched without producing further improvements.

B. Considering Input Samples with Uncertainty

So far, we have only considered a case where input
symbols are non-probabilistic, i.e. terminals (a, b, c...) are
not assigned with probability values. However, since we
assume that low-level action detectors could also provide
uncertainty (confidence) values as output, it is beneficial to
exploit this information. If there is higher rate of noise, it is
more likely that the certainty of a symbol is lower. Based
on this assumption, we first compute the probability of a

sub-pattern λ = s1s2s3...sn of length n from input, as

P (λ) = (
∏
n

P (sn))
1
n (4)

The term 1
n is used to normalize the probability as the

probability will always decrease as λ gets lengthier. The
expected value of λ is obtained by averaging all occurrences
of λ in the input. Thus, we modify the equation (2) as

P (X → λi) =
f(X → λi)µ(λi)∑
k f(X → λk)µ(λk)

(5)

where µ(·) denotes the expected value and i denotes the i-th
rule of X . We use this equation throughout our experiments.

In our method, we define the model prior probability

P (M) = P (MS ,Mθ) = P (MS)P (Mθ|MS) (6)

where P (MS) denotes structure prior and P (Mθ) denotes
parameter prior. As in [8] and [9], P (MS) is defined as Pois-
son distribution with mean (average production length) 3.0.
P (Mθ|MS) is defined as the product of Dirichlet distributions,
such that each Dirichlet distribution represents uniformly
distributed probability across all possible productions of a
non-terminal symbol X, i.e.:

PX(Mθ|MS) =
1

β(α1, ..., αn)

n∏
i=1

θi
αi−1, (7)

where β is a beta distribution with parameters αi, and θi is
the rule probability which are uniformly distributed. Since
we have no prior knowledge about the distribution of the
grammar parameters, αi = αj∀i, j and

∑n
i αi = 1

V. EXPERIMENTS AND ANALYSIS

To test our framework, we first experiment on synthetic
data with systematically varying the levels of noise, followed
by real-world data obtained from camera. As MDL scores
depend on the data samples, we compute the ratio values of
MDL scores between the learned grammar and the hand-made
model grammar.

We apply pruning process as in [8] to speed up the
induction and filter out non-critical production rules having
probabilities lower than some threshold τ , as they are often
accidentally created due to noise. If the removal of a rule
decreases the description length of model prior but increases
that of data likelihood in relatively small amount, it will lead
to a better (lower) MDL score. We set τ = 0.01 in all of our
experiments.

A. Bag-of-Balls Experiment

In this experiment, we assume a scenario where arbitrary
number of balls are inserted into a bag (denoted as a), moved
to another place (denoted as b), and the same number of balls
are taken out later (denoted as c), which can be represented
in the form anbcn. The samples are randomly generated from
this model grammar up to the length of 9 (n=4).

To test over noise sensitiveness, we add Insertion and
Substitution errors. An Insertion error inserts a random symbol
into the input and a Substitution error randomly replaces

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

Noise Level

Q
u
al

it
y
 S

co
re

Proposed

Kitani et al.

Stolcke et al.

Fig. 3. Quality scores of grammars generated by various methods. The
lower score indicates that the grammar is more compact yet maintains enough
expressive power.

 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
0

50

100

150

200

250

300

350

400

450

500

Noise Level

M
D

L
 S

co
re

s

Stolcke et al.

Kitani et al.

Proposed

Model

Fig. 4. Actual MDL scores for each method compared with the model
grammar. MDL scores are averaged over 10 trials for each noise condition.
The graph is shown with 2% step for better view. The lower score indicates
that the grammar is more compact yet reasonably expressive. How these
scores affect the performance in real world will be discussed in Sec. V-B

a symbol with any incorrect one. We test with the noise
probability in the range of [0%, 20%] with 1% step, totaling
in 21 noise conditions. A noise probability of 10% means
that either a Substitution or Insertion error has occurred in
approximately 10% of the input symbols. Each noise condition
is conducted 10 times with randomly generated dataset and its
mean MDL score is computed, resulting in 210 experiments
in total. We conduct each experiment with two previously
reviewed methods reported by Kitani [9] and Stolcke [8].

The confidence values of terminal symbols are given such
that the correct symbol is assigned with the probability
computed from Gaussian distribution with µ = 0.85, σ = 0.1
and wrong symbol with µ = 0.15, σ = 0.1. We set unrelated
symbol d to be included as noise, as in [9].

The quality score of a grammar is the ratio of MDL scores
between learned grammar and the model grammar, where the
lower score indicates that the grammar is more compact yet
maintains enough expressive power. Fig. 3 shows the quality
scores over various noise conditions, where in most cases
the grammars generated by our proposed method have the
lowest quality scores implying that they are well-balanced
between compactness and expressiveness.

As qualitative analysis, we now examine some of the
obtained grammars. In the case with noise probability 0.08, a
grammar obtained using the method proposed in [9] is shown
in Fig. 5(a). Under this noise condition, the mean MDL score
was 330.38 and the standard deviation was 39.72. A grammar
obtained using our proposed method under the same noise
condition with the same dataset is shown in Fig. 5(b). The
mean MDL score was 300.62 and the standard deviation was
48.27. The average MDL scores can be seen in Fig. 4.

 (a)
SY (8.00)
 | AYC (3.00)
 | AABAC (1.00)
 | AACACCCC (1.00)
 | AAYCC (1.00)
 | CY (1.00)
YAABCC (8.00)

 (b)
SAABCC (6.99)
 | ASC (2.66)
 | AASCC (0.93)
 | CS (0.64)
 | AABAC (0.46)

[0.53]
[0.20]
[0.07]
[0.07]
[0.07]
[0.07]
[1.00]

[0.60]
[0.23]
[0.08]
[0.05]
[0.04]

Fig. 5. Obtained grammars using method in [9](a) and proposed method(b)
from data with noise probability 0.08.

It is worth noting that the rule scores in the grammar
generated using our method reflect the uncertainty values
of input symbols. As a result, in Fig. 5(b) the erroneous
sequence AABAC (the last rule) has a rule score of 0.46
in contrast to 1.00 in Fig. 5(a), as the symbol C had lower
probability (higher uncertainty) due to noise. In the second
grammar, since rules containing noise quickly converged to
very low probability (less than 0.01) and pruned, the rule
probability for the correct cases, e.g. S → AABCC has
relatively higher probability value. This will result in higher
likelihood when parsed on new samples with the same class.

In the following section, we show how MDL scores actually
reflect the performance in several real world scenarios.

B. The Towers of Hanoi

We try our method on real-world data obtained from the
demonstrations of 5 human participants using a camera. We
set our goal to be a successful imitation where a robot follows
the correct sequence of actions demonstrated by a human
partner. However, instead of simply imitating, we require
that the robot should deal with noise using the knowledge
obtained in prior so that it can perform the intended action
sequence correctly even when the perceived symbols are
partially incorrect. Furthermore, we are interested in tasks
that include recursion which can be demonstrated in various
lengths of action sequences, resulting in more challenging
setting. We choose The Towers of Hanoi problem as it satisfies
the above requirements.

1) Experiment Scenario : In training phase, a human
demonstrator solves the puzzle using only 2 and 3 disks,
repeating each 3 times. The robot then learns an activity
grammar from each demonstrator using techniques explained
in Sec. IV. Thus, 5 activity grammars are learned in total.

In testing phase, a human demonstrator solves the puzzle
using 4 disks, repeating 3 times. The trained activity grammar
is used to parse the observation, which generates a sequence
of actions to execute. A reproduction is considered a success
only if the robot solves the puzzle by correctly executing
the complete sequence of actions. Each activity grammar is
used to parse each demonstration, which results in 15 tests
for each of our 5 participants, or 75 in total. Fig. 7 shows
the end state of a reproduction using the iCub simulator (see
associated video file in the proceedings).

We experiment under two types of noise conditions:
low-noise (indoor lighting) and high-noise (direct sunlight)
conditions. That is, a) train on low-noise condition and test
on both low- and high-noise conditions, respectively, and b)

Fig. 6. A sample tracking screen while a human participant is solving the
puzzle with 4 disks. Compared to the left figure (low-noise condition), the
right figure (high-noise condition) shows over-exposured spots which often
makes the tracker unstable. The tracker immediately resets the position if
lost by searching the desired blob from the entire region of the image.

Fig. 7. The Towers of Hanoi. iCub
is performing parsed actions.[15]

Symbol Actions
L Lift a disk
D Drop a disk
A Move between 1 and 2
B Move between 1 and 3
C Move between 2 and 3

Fig. 8. Actions defined in Towers
of Hanoi experiment. The system
is equipped with these 5 primitive
action detectors which generates
symbol probability during observa-
tion.

train on high-noise condition and test on both conditions. All
samples of high-noise data set were captured in the same day
for consistency. Example samples can be seen in Fig. 6.

Since we are interested in high-level task representations,
we assume that the system can detect minimal level of
meaningful actions and generate symbols. Similar to [2],
we define these atomic action detectors using HMMs where
each model corresponds to an action symbol with its output
value representing the symbol’s certainty, or probability value.

In this experiment, our system generates 5 types of action
symbols during observation as detailed in Fig. 8. The reason
we define symbols like Disk moved “between” A and B
instead of Disk moved “from” A to B is because they are
sufficient to represent the task which can avoid generating
excessive number of symbols. As the rule of the puzzle
enforces that only a smaller disk shall be placed on top of
the bigger disk, there is always only a single possibility of
moving a disk between two towers. This is a fair assumption
as this rule is always given in prior, not learned. Thus, in
terms of executing symbols A, B, and C, we can expect that
the robot will make the correct move. During the training
phase, the symbol with the highest certainty is fed into the
input of the grammar building algorithm.

If we denote action sequences LAD as X , LBD as Y , and
LCD as Z, then symbols X , Y , and Z represent pick-and-
place action sequences. The optimal solution of the puzzle
can represented as (XY Z)n, meaning “Perform (XY Z)
recursively until the problem is solved.”

We use a camera with resolution 640x480, 30 frames
per second. Object trackers are implemented using standard
CamShift algorithm provided in [16], with additional Kalman
filtering to improve stability. A sample tracking screen is

Fig. 9. Success rates using our method, base method [8] and pure imitation.
Scenarios LL and LH: Train on low-noise condition and test on low- and
high-noise conditions, respectively. Scenarios HL and HH: Train on high-
noise condition and test on low- and high-noise conditions, respectively. The
fact that a single mistake while parsing a long test sequence causes a failure
makes this problem non-trivial.

Scenario Method Success Avg.MDL Scenario Method Success Avg.MDL

LL
Proposed 55 284.63

LH
Proposed 37 286.92

Base 43 390.28 Base 31 393.26
Imitation 25 N/A Imitation 15 N/A

HL
Proposed 49 306.25

HH
Proposed 30 306.66

Base 11 469.32 Base 9 469.46
Imitation 25 N/A Imitation 15 N/A

Fig. 10. Detailed results with average MDL scores for comparison. Each
case is tested on 75 sequences. MDL score is not available for pure imitation
as it does not rely on any learned model. It is worth noting that lower MDL
score generally leads to higher success rate.

shown in Fig. 6. As it depends on the color information of
blobs, it often produces errors due to lighting conditions.

2) Results and Analysis: As explained in the last section,
the objective here is to learn a high-level task representation
from a few short sequences of demonstrations that can be used
to better parse the unforeseen, possibly more complicated
activities that shares of same action components. We report
the performances in 4 scenarios (LL, LH, HL, HH) in Fig. 9.

In scenarios LL and LH, models are both trained from
demonstrations of 2 and 3 disks under low-noise condition,
where they are tested on demonstrations of 4 disks on
low-noise and high-noise conditions, respectively. Similarly,
scenarios HL and HH are trained from high-noise condition
and tested on both noise conditions.

We compare with the base method [8] and pure imitation
method which simply follows what has been observed from
demonstrations. In any case, if the system makes any single
mistake while recognizing human demonstration due to either
wrong tracking or wrong symbol interpretation, it is marked
as failed. This makes our scenarios non-trivial as each testing
sequence is composed of 45 symbols. Please refer to Fig. 11
to see error statistics. We do not use the method proposed by

Demonstrations using 4 disks Low-noise High-noise Total
Total number of sequences 15 15 30
Sequences containing wrong symbol 10 12 22
Average error symbols per trial 1.13 2.20 1.67

Fig. 11. Error statistics of demonstrations using 4 disks on each noise
condition. Note that even in low-noise condition, there are only 5 trials
observed with all correct symbols, which means that in most cases pure
imitation will not lead to the desired goal state. Each testing sequence is
composed of 45 action symbols, which makes this problem non-trivial as
only a single mistake will make it fail to achieve the goal.

SLAD
 | LBD
 | LCD
 | CADSS
 | SLBAS
 | SSS

SLADLBDLCD
 | SSLAD
 | SSSSS

[0.666667]
[0.285714]
[0.047619]

[0.205669]
[0.204606]
[0.163233]
[0.020551]
[0.017184]
[0.388758]

(a) (b)

Fig. 12. (a) A sample grammar that captured the meaningful action
components such as LAD, LBD, and LCD (lines 1-3). These components
can be used to enforce the observation to be consistent with the demonstrator’s
intended actions. CADSS and SLBAS (lines 4-5) come from noisy
examples and since their frequencies in training data are very low, they are
assigned much lower probabilities. (b) A sample grammar constructed in an
ideal case where no noise symbols exist.

Kitani et al[9] in this experiment as all generated symbols
are always related to the task.

As can be seen in Fig. 9, it is important to note that there is
a noticeable difference on base method between scenarios LL
and HL, and between LH and HH. As scenarios HL and HH
are trained from noisy training data, the task representations
could be easily corrupted. This could even lead to parse the
correct symbol into wrong symbol which results in worse
performance than purely imitating observed actions, whereas
our method at least performs better than pure imitation.

It is also worth noting that from Fig. 10, we can confirm that
lower MDL score leads to generally better representations. A
model with the highest MDL score 469.46 (scenario HH, Base
method) had the poorest performance, where a model with the
lowest MDL score 284.63 (scenario LL, Proposed method)
exhibited the best performance. As expected, models learned
in high-noise condition tend to have lengthier descriptions,
which increases prior score. Relatively high MDL scores
generally mean that they are too specific, failing to capture
the recursiveness nature of the task.

The example grammar constructed using the proposed
method (Fig. 12(a)) shows that it captured meaningful action
components: LAD, LBD, and LCD. (lines 1-3) Although
there are intermittent error symbols in input sequences, the
underlying structures of action components are captured
effectively. It is worth emphasizing that this structure enables
the contextually consistent parsing of new observations. For
example, the learned action component LAD allows the
action DROP (D) to be expected when MOVE BETWEEN
(A) action is observed, even if DROP action was missed or
misinterpreted. The last line of the grammar rules shows that
it also captured the recursiveness nature of the task.

Although each model is constructed only from 6 sample
sequences, it successfully captured these core components
due to active substring searching explained in Sec. IV-A. Fig.
12(b) shows an example grammar constructed from data that
contains no noise at all. Most of the experiments, however,
includes noise symbols in the middle of input sequences
which hinders the discovery of the full meaningful action
component such as LADLBDLCD in Fig. 12(b), line 1.
Nevertheless, grammars discovered like the one in Fig. 12(a)
worked reasonably well to support parsing the same task with
more complicated sequences.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

We have presented an activity grammar learning method
which searches for frequently occurring sub-strings from the
input stream that are likely to be reusable considering the
uncertainty values of the input symbols. We have shown in 4
non-trivial real-world scenarios that our method is capable to
learn reusable structures under reasonable amount of noise. We
have experimentally shown that a lower MDL score generally
leads to higher performance on parsing unforeseen actions.

The discovery of important component actions and recursions
were critical to the performance which are supported by
the results reported in Sec. V-B.2. For example, the action
componentLAD in Fig. 12(a), line 1 (Lift a disk, move between
towers 1 and 2, then drop it.) allows contextually consistent
interpretation by biasing the parser to parse in the order of
L − A − D even when the observed symbols are partially
wrong. The results reported in Sec. V-A support our idea that
handling uncertainty values of input symbols is beneficial. It is
worth mentioning that we have not used any prior information
at the symbolic level.

In future work, the inclusion of structural priors could be
beneficial in terms of both searching speed and grammar
accuracy as certain models will be effectively rejected even if
they retain good MDL scores. This will be especially useful
in the domain of imitation learning which often shares many
reusable components across the tasks.

ACKNOWLEDGMENTS
This work was supported by the EU FP7 project EFAA (FP7-ICT-270490).

REFERENCES

[1] M. Ryoo and J. Aggarwal, “Robust human-computer interaction system
guiding a user by providing feedback,” in IJCAI, 2007, pp. 2850–2855.

[2] Y. A. Ivanov and A. F. Bobick, “Recognition of visual activities and
interactions by stochastic parsing,” TPAMI, vol. 22, pp. 852–872, 2000.

[3] K. Lee and Y. Demiris, “Towards incremental learning of task-dependent
action sequences using probabilistic parsing,” ICDL, 2011.

[4] C. de la Higuera, “A bibliographical study of grammatical inference,”
Pattern Recognition, vol. 38, no. 9, pp. 1332–1348, 2005.

[5] Y. Aloimonos, et al., “The language of action: a new tool for human-centric
interfaces,” Human Centric Interfaces for Ambient Intell., 2009.

[6] C. Nevill-Manning and I. Witten, “Identifying hierarchical structure in
sequences: A linear-time algorithm,” JAIS, pp. 67–82, 1997.

[7] Z. Solan, et al., “Unsupervised learning of natural languages,” PNAS,
vol. 102, no. 33, pp. 11 629–11 634, 2005.

[8] A. Stolcke and S. Omohundro, “Inducing probabilistic grammars by
bayesian model merging,” Gramm. Infer. and App., pp. 106–118, 1994.

[9] K. Kitani, et al., “Recovering the basic structure of human activities
from noisy video-based symbol strings,” IJPRAI, 2008.

[10] Y. Kuniyoshi, et al., “Learning by watching: Extracting reusable task
knowledge from visual observation of human performance,” T. Robotics
and Automation, vol. 10, pp. 799–822, 1994.

[11] S. Schaal, “Is imitation learning the route to humanoid robots?” Trends
in Cognitive Sciences, vol. 3, no. 6, pp. 233–242, 1999.

[12] Y. Demiris and B. Khadhouri, “Hierarchical attentive multiple models
for execution and recognition of actions,” RAS, vol. 54, no. 5, 2006.

[13] P. Langley and S. Stromsten, “Learning context-free grammars with a
simplicity bias,” in ECML. Springer, 2000, pp. 321–338.

[14] F. Zhou, et al., “Aligned cluster analysis for temporal segmentation of
human motion,” in Automatic Face & Gesture Recognition, 2008.

[15] U. Pattacini, et al., “An experimental evaluation of a novel minimum-jerk
cartesian controller for humanoid robots,” in IROS, 2010.

[16] G. Bradski, “The opencv library,” Doctor Dobbs Journal, vol. 25, no. 11,
pp. 120–126, 2000.

